Part Number Hot Search : 
10602 12K15 FX009LG GBJ2510 XPC750ED RC0136A C3616 NB650
Product Description
Full Text Search
 

To Download IRAUDAMP8 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com page 1 of 34 IRAUDAMP8 rev 1.0 IRAUDAMP8 120w x 4 channel class d audio power amplifier using the irs2093m and irf6665 by jun honda, yasushi nishimura and liwei zheng caution: international rectifier suggests the following guidelines for safe operation and handling of IRAUDAMP8 demo board; ? always wear safety glasses whenever operating demo board ? avoid personal contact with exposed metal surfaces when operating demo board ? turn off demo board when placing or removing measurement probes
www.irf.com page 2 of 34 IRAUDAMP8 rev 1.0 table of contents page introduction................................................................................................................... ............................ 3 specificat ions ................................................................................................................. ........................... 3 connectio n set up ............................................................................................................... ...................... 5 connector d escription .......................................................................................................... ............... 5 test proc edures................................................................................................................ ....................... 6 performance and test g raphs .................................................................................................... ...... 7 clipping char acteris tics....................................................................................................... ............. 10 effici ency..................................................................................................................... .............................. 11 thermal cons iderations ......................................................................................................... ............ 11 t hermal i nterface m aterial ? s p ressure c ontrol ................................................................................. 12 power supply reject ion ratio (psrr)............................................................................................ 14 short circuit prot ection response .............................................................................................. 15 IRAUDAMP8 overview ............................................................................................................. ................. 16 functional d escript ions........................................................................................................ ............. 18 irs2093 g ate d river ic ............................................................................................................................ 1 8 s elf -o scillating f requency .................................................................................................................... 19 a djustments of s elf -o scillating f requency ......................................................................................... 19 s electable d ead - time ............................................................................................................................... .20 protection syst em overview ..................................................................................................... ....... 21 click and pop no ise reduction .................................................................................................. ....... 23 bus pumping.................................................................................................................... ........................... 23 input signal a nd gain setting .................................................................................................. ......... 25 gain se tting................................................................................................................... ............................ 25 schematic????????????????????????????????????????. .26 IRAUDAMP8 fabricat ion mate rials................................................................................................ ... 27 IRAUDAMP8 hardware ............................................................................................................. ............... 30 IRAUDAMP8 pcb specifications................................................................................................... ........ 31 revision chang es descri ptions.................................................................................................. ...... 34
www.irf.com page 3 of 34 IRAUDAMP8 rev 1.0 introduction the IRAUDAMP8 demo board is a reference design which uses only one ic (irs2093m) to derive appropriate input signals, amplify the audio i nput, and achieve a four-channel 120 w/ch (4 ? ) half-bridge class d audio power amplifier. the reference design demonstrates how to use the irs2093m class d audio controller and gate driver ic, implement protection circuits, and design an optimum pcb layout using irf6665 directfet mosfets. the reference design contains all the required housekeeping power supplies for ease of use. the four-channel design is scalable, for power and number of channels. applications ? av receivers ? home theater systems ? mini component stereos ? powered speakers ? sub-woofers ? musical instrument amplifiers ? automotive after market amplifiers features output power: 120w x 4 channels, residual noise: 200 ? v, ihf-a weighted, aes-17 filter distortion: 0.012% thd+n @ 60w, 4 ? efficiency: 90% @ 120w, 4 ? , single-channel driven, class d stage multiple protection features: over-current protection (ocp), high side and low side over-voltage protection (ovp), under-voltage protection (uvp), high side and low side over-temperature protection (otp) pwm modulator: self-oscillating half-bridge topology with optional clock synchronization specifications general test conditions (unless othe rwise noted) notes / conditions supply voltages 35v load impedance 4 ? self-oscillating frequency 400kh z no input signal, adjustable gain setting 26.5db 1vrms input yields rated power electrical data typical notes / conditions ir devices used irs2093m audio controller and gate-driver, irf6665 directfet mosfets modulator self-oscillating, second order sigma-delta modulation, analog input power supply range 25v to 35v bipolar power supply output power ch1-4: (1% thd+n) 120w 1khz output power ch1-4: (10% thd+n) 170w 1khz rated load impedance 8-4 ? resistive load
www.irf.com page 4 of 34 IRAUDAMP8 rev 1.0 standby supply current 100ma no input signal total idle power consumption 7w no input signal channel efficiency 90% single-channel driven, 120w, class d stage . audio performance * before demodula tor class d output notes / conditions thd+n, 1w thd+n, 10w thd+n, 60w thd+n, 100w 0.015% 0.006% 0.005% 0.015% 0.015% 0.008% 0.012% 0.02% 1khz, single-channel driven dynamic range 101db 101db a-weighted, aes-17 filter, single-channel operation residual noise, 22hz - 20khzaes17 200 ? v 200 ? v self-oscillating ? 400khz damping factor 2000 48 1khz, relative to 4 ? load channel separation 85db 85db 75db 78db 77db 70db 100hz 1khz 10khz frequency response : 20hz-20khz : 20hz-35khz n/a 1db 3db 1w, 4 ? - 8 ? load thermal performance typical notes / conditions idling t c =30 ? c t pcb =42 ? c no signal input, t a =25 ? c 4ch x 15w (1/8 rated power) t c =54 ? c t pcb =71 ? c continuous, t a =25 ? c 4ch x 120w (rated power) t c =80 ? c t pcb =106 ? c at otp shutdown @ 150 sec, t a =25 ? c physical specifications dimensions 3.94?(l) x 2.83?(w) x 0.85?(h) 100 mm (l) x 72 mm (w) x 21.5 mm(h) weight 0.140kgm
www.irf.com page 5 of 34 IRAUDAMP8 rev 1.0 connection setup fig 1 typical test setup connector description ch1 in cn1 analog input for ch1 ch2 in cn1 analog input for ch2 ch3 in cn1 analog input for ch3 ch4 in cn1 analog input for ch4 supply p1 positive and negative supply (+b / -b) ch1 out p2 output for ch1 ch2 out p2 output for ch2 ch3 out p3 output for ch3 ch4 out p3 output for ch4 250w,4 ? non-inductive ch1 ch2 ch3 ch4 irs2093 ch2 ch1 +b gnd -b ch4 ch3 output input g ds1 35 v, 10 a dc supply 35 v, 10 a dc supply a udio si g nal generato r output vr1 frequency adjustor ,vcc indicator irf6665
www.irf.com page 6 of 34 IRAUDAMP8 rev 1.0 test procedures test setup: 1. connect 4 ? -200 w dummy loads to 4 output connectors (p2 and p3 as shown on fig 1) and an audio precision analyzer (ap). 2. connect the audio signal generator to cn2 for ch1~ch4 respectively (ap). 3. set up the dual power supply with voltages of 35v; current limit to 10a. 4. turn off the dual power supply before connecting to on of the unit under test (uut). 5. connect the dual power supply to p1. as shown on fig 1 power up: 6. turn on the dual power supply. the b supplies must be applied and removed at the same time. 7. the blue led should turn on immediately and stay on 8. quiescent current for the positive supply should be 100ma ? 10ma at +35v. 9. quiescent current for the negative supply should be 115ma ? 10ma at ?35v. switching frequency test 10. with an oscilloscope, monitor the switching waveform at test points vs1~vs4. adjust vr1 to set the self oscillating frequency to 400 khz ? 25 khz. functionality audio tests: 11. set the signal generator to 1khz, 20 mv rms output. 12. connect the audio signal generator to cn2(input of ch1,ch2,ch3,ch4) 13. sweep the audio signal voltage from 15 mv rms to 1 v rms . 14. monitor the output signals at p2/p3 with an oscilloscope. the waveform must be a non distorted sinusoidal signal. 15. observe that a 1 v rms input generates an output voltage of 21.2 v rms . the ratio, r4a/(r3a), determines the voltage gain of IRAUDAMP8. test setup using audio precision (ap): 16. use an unbalanced-floating signal from the generator outputs. 17. use balanced inputs taken across output terminals, p2 and p3. 18. connect ap frame ground to gnd at terminal p1. 19. select the aes-17 filter(pull-down menu) for all the testing except frequency response. 20. use a signal voltage sweep range from 15 mv rms to 1 v rms . 21. run ap test programs for all subsequent tests as shown in fig 2- fig 7below.
www.irf.com page 7 of 34 IRAUDAMP8 rev 1.0 performance and test graphs 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 100m 200 200m 500m 1 2 5 10 20 50 100 w ch1-blue; ch2-yellow; ch3-red; ch4-cyan b supply = 35v, 4 ? resistive load fig 2 IRAUDAMP8, thd+n versus power, stereo, 4 ? . -10 +4 -9 -8 -7 -6 -5 -4 -3 -2 -1 -0 +1 +2 +3 d b r a 20 200k 50 100 200 500 1k 2k 5k 10k 20k 50k 100k hz t ch1-blue; ch2-yellow; ch3-red; ch4-cyan b supply = 35v, 4 ? resistive load fig 3 IRAUDAMP8, frequency response
www.irf.com page 8 of 34 IRAUDAMP8 rev 1.0 0.0001 100 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 % 20 20k 50 100 200 500 1k 2k 5k 10k hz red ch1, 10w output blue ch1, 50w output fig 4 thd+n ratio vs. frequency ch1-blue; ch2-yellow; ch3-red; ch4-cyan fig 5, 1v output frequency spectrum
www.irf.com page 9 of 34 IRAUDAMP8 rev 1.0 ch1-blue; ch2-yellow; ch3-red; ch4-cyan no signal, self oscillator @ 400khz fig 6, IRAUDAMP8 noise floor . -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz red ch1 ? ch2, 60w blue ch2 ? ch1, 60w fig 7, channel separation vs. frequency
www.irf.com page 10 of 34 IRAUDAMP8 rev 1.0 clipping characteristics 60w / 4 ? , 1khz, thd+n=0.012% 174w / 4 ? , 1khz, thd+n=10% measured output and distortion waveforms fig 8 clipping characteristics . red trace: total distortion + noise voltage green trace: output voltage
www.irf.com page 11 of 34 IRAUDAMP8 rev 1.0 efficiency fig 9 shows efficiency characteristics of the IRAUDAMP8. the high efficiency is achieved by following major factors: 1) low conduction loss due to the directfets offering low r ds(on) 2) low switching loss due to the directfets offering low input capacitance for fast rise and fall times secure dead-time provided by the irs2093, avoiding cross-conduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 50 100 150 output power (w) efficiency (%) amp8 35v 4ohms fig 9, IRAUDAMP8 4 ohms load stereo, b supply = 35v thermal considerations with this high efficiency, the IRAUDAMP8 design can handle one-eighth of the continuous rated power, which is generally considered to be a normal operating condition for safety standards, without additional heatsinks or forced air-cooling.
www.irf.com page 12 of 34 IRAUDAMP8 rev 1.0 thermal interface materia l?s pressure control the pressure between directfet & tim (thermal interface material) is controlled by depth of heat spreader?s groove. choose tim which is recommended by ir . (refer to an-1035 for more details). tim?s manufacturer thickness, conducti vity, & etc. determine pressure requirement. below shows selection options recommended: fig 10 tim information
www.irf.com page 13 of 34 IRAUDAMP8 rev 1.0 check the tim?s compression deflection with constant rate of strain (example as fig.11) base on manufacturer?s datasheet. according to the stress requirement, find strain range for the tim. then, calculate heat spreader groove depth as below: groove depth=directfet?s height +tim?s thickness*strain **directfet?s height should be measured from pcb to the top of directfet after reflow. the average height of irf6665 is 0.6mm. fig 11 compression deflection with constant rate of strain
www.irf.com page 14 of 34 IRAUDAMP8 rev 1.0 power supply rejection ratio (psrr) the IRAUDAMP8 obtains good power supply rejection ratio of -68 db at 1khz shown in fig 12. with this high psrr, IRAUDAMP8 accepts any power supply topology when the supply voltages fit between the min and max range. color sweep trace line style thick data axis comment 1 1 red solid 2 anlr.ampl left -90 +0 -80 -70 -60 -50 -40 -30 -20 -10 d b v 20 40k 50 100 200 500 1k 2k 5k 10k 20k hz fig 12 amp8 power supply rejection ratio (psrr)
www.irf.com page 15 of 34 IRAUDAMP8 rev 1.0 short circuit protection response figs 13-14 show over current protection reaction ti me of the IRAUDAMP8 in a short circuit event. as soon as the irs2093 detects an over current condition, it shuts down pwm. after one second, the irs2093 tries to resume the pwm. if the short circuit persists, the irs2093 repeats try and fail sequences until the short circuit is removed. short circuit in positive and negative load current fig 13 positive and negative ocp waveforms . ocp waveforms showing csd trip and hiccup fig 14 ocp response with continuous short circuit load current csd p in vs p in load current csd p in vs p in load current csd p in load current vs p in csd p in vs p in load current vs p in load current vs p in positive ocp negative ocp
www.irf.com page 16 of 34 IRAUDAMP8 rev 1.0 IRAUDAMP8 overview the IRAUDAMP8 features a 4ch self-oscillating type pwm modulator for the smallest space, highest performance and robust design. this topology represents an analog version of a second- order sigma-delta modulation having a class d swit ching stage inside the loop. the benefit of the sigma-delta modulation, in comparison to the carri er-signal based modulation, is that all the error in the audible frequency range is shifted to the inaudible upper-frequency range by nature of its operation. also, sigma-delta modulation allows a designer to apply a sufficient amount of error correction. the IRAUDAMP8 self-oscillating topology consists of following essential functional blocks. ? front-end integrator ? pwm comparator ? level shifters ? gate drivers and mosfets ? output lpf integrator referring to fig 15 below, the input operational amplifier of the irs2093 forms a front-end second- order integrator with r3, c2, c3, and r2. the integrator that receives a rectangular feedback signal from the pwm output via r4 and audio input signal via r3 generates a quadratic carrier signal at the comp pin. the analog input signal shifts the average value of the quadratic waveform such that the duty cycle varies according to the instantaneous voltage of the analog input signal. pwm comparator the carrier signal at the comp pin is converted to a pwm signal by an internal comparator that has a threshold at middle point between vaa and vss. the comparator has no hysteresis in its input threshold. level shifters the internal input level-shifter transfers the pwm signal down to the low-side gate driver section. the gate driver section has another level-shifter that level shifts up the high-side gate signal to the high-side gate driver section.
www.irf.com page 17 of 34 IRAUDAMP8 rev 1.0 gate drivers and directfets the received pwm signal is sent to the dead-time generation block where a programmable amount of dead time is added into the pwm signal between the two gate output signals of lo and ho to prevent potential cross conduction across the output power directfets. the high-side level- shifter shifts up the high-side gate drive signal out of the dead-time block. each channel of the irs2093?s drives two directfets, high- and low-sides, in the power stage providing the amplified pwm waveform. output lpf the amplified pwm output is reconstructed back to an analog signal by the output lc lpf. demodulation lc low-pass filter (lpf) formed by l1 and c13, filters out the class d switching carrier signal leaving the audio output at the speaker load. a single stage output filter can be used with switching frequencies of 400 khz and greater; a design with a lower switching frequency may require an additional stage of lpf. fig 15 simplified block diagram of IRAUDAMP8 class d amplifier
www.irf.com page 18 of 34 IRAUDAMP8 rev 1.0 functional descriptions irs2093 gate driver ic the IRAUDAMP8 uses the irs2093, a 4 channel high-voltage (up to 200 v), high-speed power mosfet driver with internal dead-time and protection functions specifically designed for class d audio amplifier applications. these functions include ocp and uvp. the irs2093 integrates bi- directional over current protection for both high-side and low-side mosfets. the dead-time can be selected for optimized performance according to the size of the mosfet, minimizing dead- time while preventing shoot-through. as a result, there is no gate-timing adjustment required externally. selectable dead-time through the dt pin voltage is an easy and reliable function which requires only two external resistors, r12 and r13 as shown on fig 16 or fig 22 below. the irs2093 offers the following functions. ? pwm modulator ? dead-time insertion ? over current protection ? under voltage protection ? level shifters refer to irs2093 datasheet and an-1146 for more details. fig 16 system-level vi ew of IRAUDAMP8
www.irf.com page 19 of 34 IRAUDAMP8 rev 1.0 self-oscillating frequency self-oscillating frequency is determined by the total delay time along the control loop of the system; the propagation delay of the irs2093, the directfets switching speed, the time-constant of front-end integrator (r2, r3, r4, c2, c3 ). variations in +b and ?b supply voltages also affect the self-oscillating frequency. the self-oscillating frequency changes with the duty ratio. the frequency is highest at idling. it drops as duty cycle varies away from 50%. adjustments of self-oscillating frequency use r2 to set different self-oscillating frequencies. the pwm switching frequency in this type of self-oscillating switching scheme greatly impacts the audio performance, both in absolute frequency and frequency relative to the other channels. in absolute terms, at higher frequencies, distortion due to switching-time becomes signifi cant, while at lower frequencies, the bandwidth of the amplifier suffers. in relative terms, interference between channels is most significant if the relative frequency difference is within the audible range. normally, when adjusting the self-oscillating frequency of the different channels, it is suggested to either match the frequencies accurately, or have them separated by at least 25khz. under the normal operating condition with no audio input signal, the switching-frequency is set around 400khz in the IRAUDAMP8 .
www.irf.com page 20 of 34 IRAUDAMP8 rev 1.0 selectable dead-time the dead-time of the irs2093 is set based on the voltage applied to the dt pin. fig 17 lists the suggested component value for each programmable dead-time between 45 and 105 ns. all the IRAUDAMP8 models use dt1 (45ns) dead-time. dead-time mode r1 r2 dt/sd voltage dt1 <10k open vcc dt2 5.6k ? 4.7k ? 0.46 x vcc dt3 8.2k ? 3.3k ? 0.29 x vcc dt4 open <10k com recommended resistor values for dead time selection vcc 0.57xvcc 0.36xvcc 0.23xvcc 105ns 85ns 65ns 45ns v dt dead- time vcc com dt >0.5ma r1 r2 irs2093m fig 17 dead-time settings vs. v dt voltage
www.irf.com page 21 of 34 IRAUDAMP8 rev 1.0 protection system overview the irs2093 integrates over current protection (ocp ) inside the ic. the rest of the protections, such as over-voltage protection (ovp), under-v oltage protection (uvp), and over temperature protection (otp), are detected externally to the irs2093 (fig 18). the external shutdown circuit will disable the output by pulling down csd pins, (fig 19). if the fault condition persists, the protection circuit stays in shutdown until the fault is removed. ht 1 os 5 vt 3 gnd 2 vcc 4 ic6 lm26cim5-xha r51 22k d51 4.7v r52 15k q5 mmbt5 5 5 1 r59 22k q3 mmbt5551 q4 mmbt5 5 5 1 r54 10k r55 47k r53 10k r57 47k r50 47k r58 47k z3 39v z4 18v ovp uvp sd r56 47k r60 15k gnd ot p -b fig 18 dcp, otp, uvp and ovp protection circuits . fig 19 simplified functional diagram of ocp
www.irf.com page 22 of 34 IRAUDAMP8 rev 1.0 over-current protection (ocp) low-side current sensing the low-side current sensing feature protects the low side directfet from an overload condition from negative load current by measuring drain-to-source voltage across r ds(on) during its on state. ocp shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level. the voltage setting on the ocset pin programs the threshold for low-side over-current sensing. when the vs voltage becomes higher than the ocset voltage during low-side conduction, the irs2093 turns the outputs off and pulls csd down to -vss. high-side current sensing the high-side current sensing protects the high side directfet from an overload condition from positive load current by measuring drain-to-source voltage across r ds(on) during its on state. ocp shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level. high-side over-current sensing monitors drain-to-source voltage of the high-side directfet during the on state through the csh and vs pins. the csh pin detects the drain voltage with reference to the vs pin, which is the source of the high-side directfet. in contrast to the low-side current sensing, the threshold of the csh pin to trigger oc protection is internally fixed at 1.2v. an external resistive divider r15, r16 and r17 are used to program a threshold as shown in fig 18. an external reverse blocking diode d1 is required to block high voltage feeding into the csh pin during low-side conduction. by subtracting a forward voltage drop of 0.6v at d1, the minimum threshold which can be set for the high-side is 0.6v across the drain-to-source. over-voltage protection (ovp) ovp is provided externally to the irs2093. o vp shuts down the amplifier if the bus voltage between gnd and -b exceeds 39v. the threshold is determined by a zener diode z3. ovp protects the board from harmful excessive supply voltages, such as due to bus pumping at very low frequency-continuous output in stereo mode. under-voltage protection (uvp) uvp is provided externally to the irs2093. uvp prevents unwanted audible noise output from unstable pwm operation during power up and down. uvp shuts down the amplifier if the bus voltage between gnd and -b falls below a voltage set by zener diode z4.
www.irf.com page 23 of 34 IRAUDAMP8 rev 1.0 offset null (dc offset) adjustment the IRAUDAMP8 requires no output-offset adjustmen t. dc offsets are tested to be less than 20 mv. over-temperature protection (otp) a preset thermostat ic, ic6 in fig 17, is placed in close proximity to the heatsink which has 8 directfets under it; and monitors heatsink temperat ure. if the heatsink temperature rises above 100 ? c, the otp shuts down all 4 channels by pulling down the csd pins of the irs2093. otp recovers once the temperature has cooled down. click and pop noise reduction thanks to the click and pop elimination function built into the irs2093, the IRAUDAMP8 does not require any additional components for this function. power supply requirements for convenience, the IRAUDAMP8 has all the necessary housekeeping power supplies onboard and only requires a pair of symmetric power supplies. or you can use it with the iraudps1 reference design which is a 12 volt systems audio power supply for automotive applications designed to provide voltage rails (+b and ?b) for class d audio power amplifiers . house keeping power supply the internally-generated housekeeping power supplies include 5v for analog signal processing, and +12v supply (v cc ) referred to the negative supply rail -b for directfet gate drive. the gate driver section of the irs2093 uses vcc to drive gates of the directfets. v cc is referenced to ?b (negative power supply). d2, r18 and c10 form a bootst rap floating supply for the ho gate driver. bus pumping when the IRAUDAMP8 is running in stereo mode, the bus pumping effect takes place with low frequency, high output. since the energy flowing in the class d switching stage is bi-directional, there is a period where the class d amplifier feeds energy back to the power supply. the majority of the energy flowing back to the supply is from the energy stored in the inductor in the output lpf.
www.irf.com page 24 of 34 IRAUDAMP8 rev 1.0 usually, the power supply has no way to absorb the energy coming back from the load. consequently the bus voltage is pumped up, creating bus voltage fluctuations. following conditions make bus pumping worse: 1. lower output frequencies (bus-pumping duration is longer per half cycle) 2. higher power output voltage and/or lower load impedance (more energy transfers between supplies) 3. smaller bus capacitance (the same energy will cause a larger voltage increase) the ovp protects IRAUDAMP8 from failure in case of excessive bus pumping. one of the easiest counter measures of bus pumping is to drive both of the channels in a stereo configuration out-of- phase so that one channel consumes the energy flow from the other and does not return it to the power supply. bus voltage detection monitors only +b supply, assuming the bus pumping on the supplies is symmetric in +b and -b supplies. blue: vs of ch3;cyan: vs of ch2;magenta: voltage of +b;gre en:current of c13a fig 20 auto-phase sync clock?s bus pumping when idling
www.irf.com page 25 of 34 IRAUDAMP8 rev 1.0 load impedance each channel is optimized for a 4 ? speaker load in half bridge. input signal and gain setting a proper input signal is an analog signal ranging from 20hz to 20khz with up to 3 v rms amplitude with a source impedance of no more than 600 ? . input signal with frequencies from 30khz to 60khz may cause lc resonance in the output lpf, causing a large reactive current flowing through the switching stage, especially with greater than 8 ? load impedances, and the lc resonance can activate ocp. the IRAUDAMP8 has an rc network called a zobel network (r21 and c14) to damp the resonance and prevent peaking frequency response with light loading impedance. (fig 21) fig 21 output low pass filter and zobel network gain setting the ratio of resistors r4a~d/r1a~d in fig 22 sets voltage gain. the IRAUDAMP8 has no on board volume control. to change the voltage gain, change the input resistor term r1a~d. changing r4a~d affects pwm control loop design and may result poor audio performance.
www.irf.com page 26 of 34 IRAUDAMP8 rev 1.0 r20b 22r c4a 1nf,50v c2a 2.2nf,50v r2a 120r r2b 120r c3c 2.2nf,50v c4c 1nf,50v c2d 2.2nf,50v r7 10r c6 4.7uf,10v c7 4.7uf,10v c2c 2.2nf,50v r6 10r r20a 22r r9a 22r r9b 22r r9c 22r r9d 22r r20d 22r r20c 22r r21b 10r,1w r21a 10r,1w c13b 0.47uf, 400v c13a 0.47uf, 400v c13d 0.47uf, 400v c13c 0.47uf, 400v c14b 0.1uf, 63v c14a 0.1uf, 63v ch3 output ch4 output ch2 output ch1 output r15c 10k r16c 3.9k r17c 10k r15d 10k r16d 3.9k r17d 10k d1d 1n4148 d1c 1n4148 d2c 1n4148 r18c 4.7r r14b 4.7r c9b 10uf,16v r16a 3.9k d1a 1n4148 r15a 10k r17a 10k d2b 1n4148 r18b 4.7r r17b 10k d1b 1n4148 r16b 3.9k r15b 10k r14a 4.7r c9a 10uf,16v r13 1k r12 nc r11 8.2k r10 2.2k r4b 100k 1% r4a 100k 1% r2c 120r r3c 4.7k r1c 22k r2d 120r r1d 22k r4c 100k 1% r4d 100k 1% c4d 1nf,50v c3d 2.2nf,50v r3a 4.7k r1b 22k r3b 4.7k r1a 22k c1a 100pf, 50v r3d 4.7k c3a 2.2nf,50v c2b 2.2nf,50v c3b 2.2nf,50v c4b 1nf,50v d2a 1n4148 r18a 4.7r d2d 1n4148 r18d 4.7r r21d 10r,1w r21c 10r,1w c14d 0.1uf, 63v c14c 0.1uf, 63v nc 3 nc 2 nc 1 csd 48 gnd 41 in4 40 comp4 39 in3 38 vaa 43 nc 5 vs4 27 cs h4 30 nc 31 comp2 45 lo2 16 vcc2 17 csh3 23 vs3 26 vb2 8 ho4 28 vcc 33 comp1 47 lo3 22 vref 36 ocset 35 lo1 15 lo4 21 vb3 24 ho3 25 com2 20 nc 18 nc 6 com 32 ho2 9 vs2 10 nc 4 vs1 11 ho1 12 vb1 13 csh1 14 vb4 29 dt 34 in2 44 in1 46 cs h2 7 nc 19 comp3 37 vss 42 -b 0 ic1 mlqp48_4ch c19a 0.1uf,100v r19a 1r r19d 1r l1 22uh l2 22uh c19b 0.1uf,100v r19b 1r c19c 0.1uf,100v r19c 1r r22 10r d3 1n4148 r22d 10k r22c 10k r22b 10k q1a irf6665 q2a irf6665 q1b irf6665 q2b irf6665 q2d irf6665 q1c irf6665 q2c irf6665 q1d irf6665 c1b 100pf, 50v c1c 100pf, 50v c1d 100pf, 50v gnd gnd gnd gnd csd gnd gnd gnd gnd d4 1n4148 c5a 10uf, 16v c5b 10uf, 16v c5c 10uf, 16v c5d 10uf, 16v r24b 2.2k r24a 2.2k r24d 2.2k r24c 2.2k r3 22k c1 0.1uf,50v vr1 10k c40 n/a c41 n/a ht 1 os 5 vt 3 gnd 2 vcc 4 ic6 lm26 cim5-xha r51 22k d51 4.7v r52 15k c10c 22uf, 16v c10b 22uf, 16v c10a 22uf, 16v c10d 22uf, 16v c8 10uf, 16v vcc 1 out 5 set 3 gnd 2 dit 4 ic2 ltc1799 r43 510r,1w r44 510r,1w c17b 1000uf,35v c17a 1000uf,35v c17c 0.1uf,50v c17d 0.1uf,50v r23b 100k r23a 100k 1a 1 1b 2 2y 3 gnd 4 2a 5 2b 6 1y 7 vcc 8 ic8 tc7w00ffct-nd l5 220uh c32 2.2uf, 50v c37 22uf, 16v c33 0.1uf, 50v c34 0.01uf, 25v c35 2200pf,50v c36 0.01uf, 50v r39 100k r40 100k r42 3.3k r32 1k r41 120k d7 r31 5.1k ds1 q1 fx491 q2 mmbt5401 r38 10r r37 47k z1 24v z2 15v r36 5.1k sw 1 bst 2 rcl 3 rtn 4 vin 8 vcc 7 ron/sd 6 fb 5 ic9 lm5007 q5 mmbt5551 r59 22k q3 mmbt5551 q4 mmbt5551 r54 10k r55 47k r53 10k r57 47k r50 47k r58 47k z3 39v z4 18v ovp uvp +b gnd -b r46 33k 1 2 3 4 5 6 7 8 cn1 ch1 gnd ch2 gnd gnd ch3 gnd ch4 ch4 input ch3 input ch2 input ch1 input 1 2 3 4 p2 1 2 3 4 p3 1 2 3 p1 +b gnd -b ch2 output ch1 output gnd gnd ch3 output ch4 output gnd gnd -5v +5v vcc c12a 220pf vss vaa -b r22a 10k c19d 0.1uf,100v sd r56 47k ch2 ch1 r60 15k c12b 220pf c12c 220pf c12d 220pf q8 zx5t853 q9 zx5t953 r45 33k z5 5.6v z6 5.6v r4 0r0 or n/a r1 0r0 or n/a gnd gnd c61 0.01uf, 50v r61 10k r62 10k for emi c62 0.01uf, 50v r12a 47k r12b 47k r12c 47k r12d 47k fig 22 IRAUDAMP8 schematic schematic
www.irf.com page 27 of 34 IRAUDAMP8 rev 1.0 IRAUDAMP8 fabrication materials table 1 IRAUDAMP8 electri cal bill of materials quantity value description designator part number vender 1 0.1uf,50v cap cer .1uf 50v 10% x7r 0603 c1 490-1519-1-nd murata electronics north america 4 100pf, 50v cap ceramic 100pf 50v np0 0603 c1a, c1b, c1c, c1d 399-1061-1-nd kemet 9 2.2nf,50v cap cer 2200pf 50v 10% x7r 0603 c2a, c2b, c2c, c2d, c3a, c3b, c3c, c3d, c35 490-1500-1-nd murata electronics north america 4 1nf,50v cap 1000pf 50v ceramicx7r 0603 c4a, c4b, c4c, c4d 399-1082-1-nd kemet 4 10uf, 16v cap 10uf 16v ha elect smd c5a, c5b, c5c, c5d pce4179ct-nd panasonic - ecg 2 4.7uf,10v cap cerm 4.7uf 10v y5v 0805 c6, c7 478-1429-1- nd avx corporation 1 10uf, 16v cap cer 10uf 16v y5v 1206 c8 490-3383-1-nd murata electronics north america 2 10uf,16v cap cer 10uf 16v y5v 0805 c9a, c9b 490-3347-1-nd murata electronics north america 5 22uf, 16v cap cer 22uf 16v x7r 1210 c10a, c10b, c10c, c10d, c37 445-3945-1-nd tdk corporation 4 220pf cap cer 220pf 50v 10% x7r 0603 c12a, c12b, c12c, c12d 490-1483-1-nd murata electronics north america 4 0.47uf, 400v cap .47uf 400v metal polypro c13a, c13b, c13c, c13d 495-1315-nd epcos inc 4 0.1uf, 63v cap film mkp .1uf 63vdc 2% c14a, c14b, c14c, c14d bc2054-nd vishay/bc components 2 1000uf,35v cap 1000uf 35v elect smg rad c17a, c17b 565-1086-nd united chemi-con 2 0.1uf,50v cap .10uf 50v ceramic x7r 1206 c17c, c17d 399-1249-1-nd kemet 4 0.1uf,100v cap cer .10uf 100v x7r 10% 0805 c19a, c19b, c19c, c19d 445-1418-1-nd tdk corporation 1 2.2uf, 50v cap cer 2.2uf 50v x7r 1206 c32 490-3367-1-nd murata electronics north america 1 0.1uf, 50v cap cer .1uf 50v 10% x7r 0805 c33 490-1666-1-nd murata electronics north america 1 0.01uf, 25v cap 10000pf 25v cerm x7r 0603 c34 pcc1763ct-nd panasonic - ecg 1 0.01uf, 50v cap cer 10000pf 50v 20% x7r 0603 c36 490-1511-1-nd murata electronics north america 2 0.01uf, 50v cap 10000pf 50v ceramic x7r 0603 c61, c62 399-1091-1-nd kemet 1 ed1520-nd terminal block 3.5mm 8pos pcb cn1 ed1520-nd on shore technology inc 10 1n4148 diode switch 100v 400mw sod-123 d1a, d1b, d1c, d1d, d2a, d2b, d2c, d2d, d3, d4 1n4148w-fdict-nd diodes inc 1 diode1 diode schottky 100v 1.5a sma d7 10mq100npbfct-nd vishay/semiconductors 1 4.7v diode zener 500mw 4.7v sod123 d51 mmsz4v7t1gosct-nd on semiconductor 1 blue led led blue clear thin 0805 smd ds1 160-1645-1-nd lite-on inc 1 mlqp48_4ch 4ch audio class d controller ic1 ir2093mpbf international rectifier 1 ltc1799 ic oscillator res set tsot23-5 ic2 ltc1799cs5#trmpbfct- nd linear technology 1 lm26cim5- xha ic thermostat preset sot23-5 ic6 lm26cim5-xhact-nd national semiconductor 1 tc7w00ffct- nd ic gate nand dual 2input 8-sop ic8 tc7w00ffct-nd toshiba 1 lm5007 ic reg sw step-down 80v 8-llp ic9 lm5007sdct-nd national semiconductor
www.irf.com page 28 of 34 IRAUDAMP8 rev 1.0 2 22uh fixed inductors for digital audio amplifier l1, l2 daepw-m185x toko 1 220uh power inductor 220uh 0.49a smd l5 308-1538-1-nd sumida corporation 1 header 3 conn term block pcb 5.0mm 3pos p1 281-1415-nd weidmuller 2 sp out terminal block 3.5mm 4pos pcb p2, p3 ed1516-nd on shore technology inc 1 fx491 trans hp npn 60v 1000ma sot-23 q1 fmmt491ct-nd zetex inc 8 irf6665 mosfet n-ch 100v 4.2a directfet q1a, q1b, q1c, q1d, q2a, q2b, q2c, q2d irf6665trpbfct-nd international rectifier 1 mmbt5401 trans 150v 350mw pnp smd sot-23 q2 mmbt5401-fdict-nd diodes inc 3 mmbt5551 trans npn 160v 350mw smd sot-23 q3, q4, q5 mmbt5551-fdict-nd diodes inc 1 zx5t853 transistor 4.5a 100v sot-89 q8 zx5t853zct-nd zetex inc 1 zx5t953 transistor pnp 3.5a 100v sot-89 q9 zx5t953zct-nd zetex inc 1 0r0 res zero ohm 1/10w 5% 0603 smd r1 p0.0gct-nd panasonic - ecg 7 22k res 22k ohm 1/10w 5% 0603 smd r1a, r1b, r1c, r1d, r3, r51, r59 rhm22kgct-nd rohm 4 120r res 120 ohm 1/10w 5% 0603 smd r2a, r2b, r2c, r2d rhm120gct-nd rohm 4 4.7k res 4.7k ohm 1/10w 5% 0603 smd r3a, r3b, r3c, r3d rhm4.7kgct-nd rohm 4 100k 1% res 100k ohm 1/8w 1% 0805 smd r4a, r4b, r4c, r4d rhm100kcrct-nd rohm 4 10r res 10 ohm 1/10w 5% 0603 smd r6, r7, r22, r38 rhm10gct-nd rohm 8 22r res 22 ohm 1/10w 5% 0603 smd r9a, r9b, r9c, r9d, r20a, r20b, r20c, r20d rhm22gct-nd rohm 1 2.2k res 2.2k ohm 1/10w 5% 0603 smd r10 rhm2.2kgct-nd rohm 1 8.2k res 8.2k ohm 1/10w 5% 0603 smd r11 rhm8.2kgct-nd rohm 2 1k res 1.0k ohm 1/10w 5% 0603 smd r13, r32 rhm1.0kgct-nd rohm 6 4.7r res 4.7 ohm 1/10w 5% 0603 smd r14a, r14b, r18a, r18b, r18c, r18d rhm4.7gct-nd rohm 16 10k res 10k ohm 1/10w 5% 0603 smd' r15a, r15b, r15c, r15d, r17a, r17b, r17c, r17d, r22a, r22b, r22c, r22d, r53, r54, r61, r62 rhm10kgct-nd rohm 4 3.9k res 3.9k ohm 1/10w 5% 0603 smd r16a, r16b, r16c, r16d rhm3.9kgct-nd rohm 4 1r res 1.0 ohm 1/8w 5% 0805 smd r19a, r19b, r19c, r19d rhm1.0arct-nd rohm 4 10r,1w res 10 ohm 1w 1% 2512 smd r21a, r21b, r21c, r21d pt10aect-nd panasonic - ecg 4 100k res 100k ohm 1/10w 5% 0603 smd r23a, r23b, r39, r40 rhm100kgct-nd rohm 4 2.2k res 2.2k ohm 1/8w 5% 0805 smd r24a, r24b, r24c, r24d rhm2.2karct-nd rohm 1 5.1k res 5.1k ohm 1/8w 5% 0805 smd r31 rhm5.1karct-nd rohm 1 5.1k res 5.1k ohm 1/10w 5% 0603 smd r36 rhm5.1kgct-nd rohm 6 47k res 47k ohm 1/10w 5% 0603 smd r37, r50, r55, r56, r57, r58 rhm47kgct-nd rohm 1 120k res 120k ohm 1/10w 5% 0603 smd r41 rhm120kgct-nd rohm 1 3.3k res 3.3k ohm 1/10w 5% 0603 smd r42 rhm3.3kgct-nd rohm
www.irf.com page 29 of 34 IRAUDAMP8 rev 1.0 2 510r,1w res 510 ohm 1w 5% 2512 smd r43, r44 pt510xct-nd panasonic - ecg 2 33k res 33k ohm 1/10w 5% 0603 smd r45, r46 rhm33kgct-nd rohm 2 15k res 15k ohm 1/10w 5% 0603 smd r52, r60 rhm15kgct-nd rohm 1 10k pot 10k ohm 3mm cerm sq top smd vr1 st32etb103ct-nd copal electronics inc 1 24v diode zener 500mw 24v sod123 z1 bzt52c24-fdict-nd diodes inc 1 15v diode zener 500mw 15v sod123 z2 bzt52c15-fdict-nd diodes inc 1 39v diode zener 39v 500mw sod-123 z3 bzt52c39-fdict-nd diodes inc 1 18v diode zener 500mw 18v sod123 z4 bzt52c18-fdict-nd diodes inc 2 5.6v diode zener 500mw 5.6v sod123 z5, z6 mmsz5v6t1gosct-nd on semiconductor table 2 IRAUDAMP8 mechani cal bill of materials quantity value description designator digikey p/n vendor 7 washer #4 ss washer lock internal #4 ss lock washer 1, lock washer 2, lock washer 3, lock washer 4, lock washer 5, lock washer 6 lock washer 7 h729- nd building fasteners 1 pcb print circuit board iraudam8m_rev 3.0 .pcb pcb 1 custom 7 screw 4- 40x5/16 screw machine phillips 4-40x5/16 screw 1, screw 2, screw 3, screw 4, screw 5, screw 6, screw 7, h343- nd building fasteners 4 stand off 0.5" standoff hex 4- 40thr .500"l alum stand off 1, stand off 2, stand off 3, stand off 4 1893k- nd keystone electro- nics 1/16 aavid 4880g thermal pad .080" 4x4" gappad thermal pad under heatsink ber164- nd therm- alloy
www.irf.com page 30 of 34 IRAUDAMP8 rev 1.0 IRAUDAMP8 hardware 4.5 4.5 3 3 10 8 27 27 12 14 1.6 6 10.5 16 6 12 IRAUDAMP8 heat spreader all thread holes are 4-40 x 8mm dip ,minimum note: all dimensions are in millimeters tolerances are 0.1mm material:aluminum fig 23 heat spreader . fig 24 hardware assemblies screw screw h343-nd screws h343-nd stand off 3 1893k-nd screw stand off 4 1893k-nd lock washers h729-nd lock washer lock washer stand off 1 1893k-nd stand off 2 1893k-nd lock washer screw h343-nd lock washer screw h343-nd lock washer screw h343-nd lock washer screw thermal pad th l d
www.irf.com page 31 of 34 IRAUDAMP8 rev 1.0 IRAUDAMP8 pcb specifications pcb: 1. two layers smt pcb with through holes 2. 1/16 thickness 3. 2/0 oz cu 4. fr4 material 5. 10 mil lines and spaces 6. solder mask to be green enamel emp110 dbg (carapace) or enthone endplate dsr-3241or equivalent. 7. silk screen to be white epoxy non conductive per ipc?rb 276 standard. 8. all exposed copper must finished with tin-lead sn 60 or 63 for 100u inches thick. 9. tolerance of pcb size shall be 0.010 ?0.000 inches 10. tolerance of all holes is -.000 + 0.003? 11. pcb acceptance criteria as defined for class ii pcb?s standards. gerber files apertures description: all gerber files stored in the attached cd-rom were generated from protel altium designer altium designer 6. each file nam e extension means the following: 1. .gtl top copper, top side 2. .gbl bottom copper, bottom side 3. .gto top silk screen 4. .gbo bottom silk screen 5. .gts top solder mask 6. .gbs bottom solder mask 7. .gko keep out, 8. .gm1 mechanical1 9. .gd1 drill drawing 10. .gg1 drill locations 11. .txt cnc data 12. .apr apertures data additional files for assembly that may not be related with gerber files: 13. .pcb pcb file 14. .bom bill of materials 15. .cpl components locations 16. .sch schematic 17. .csv pick and place components 18. .net net list 19. .bak back up files 20. .lib pcb libraries
www.irf.com page 32 of 34 IRAUDAMP8 rev 1.0 fig 25 IRAUDAMP8 pcb top overlay (top view)
www.irf.com page 33 of 34 IRAUDAMP8 rev 1.0 fig 26 IRAUDAMP8 pcb bottom layer (top view)
www.irf.com page 34 of 34 IRAUDAMP8 rev 1.0 revision changes descriptions revision changes description date rev 1.0 released jan, 08 th 2009 rev 1.1 rohs compliant (bom updated) may,29 th 2009 world headquarters: 233 kansas st., el segundo, calif ornia 90245 tel: (310) 252-7105 data and specifications su bject to change without notice. 01/29/2009


▲Up To Search▲   

 
Price & Availability of IRAUDAMP8

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X